

Note

Synthesis of azo compounds containing thymol moiety

S M Koshti, J P Sonar, A E Sonawane, Y A Pawar, P S Nagle, P P Mahulikar & D H More*

School of Chemical Sciences, North Maharashtra University, Jalgaon 425 001, India

E-mail: dhmore@rediffmail.com

Received 6 May 2007; accepted (revised) 3 December 2007

The present work includes the synthesis of azo compounds containing thymol moiety.

Keywords: Thymol, azo compounds, monoterpenoids

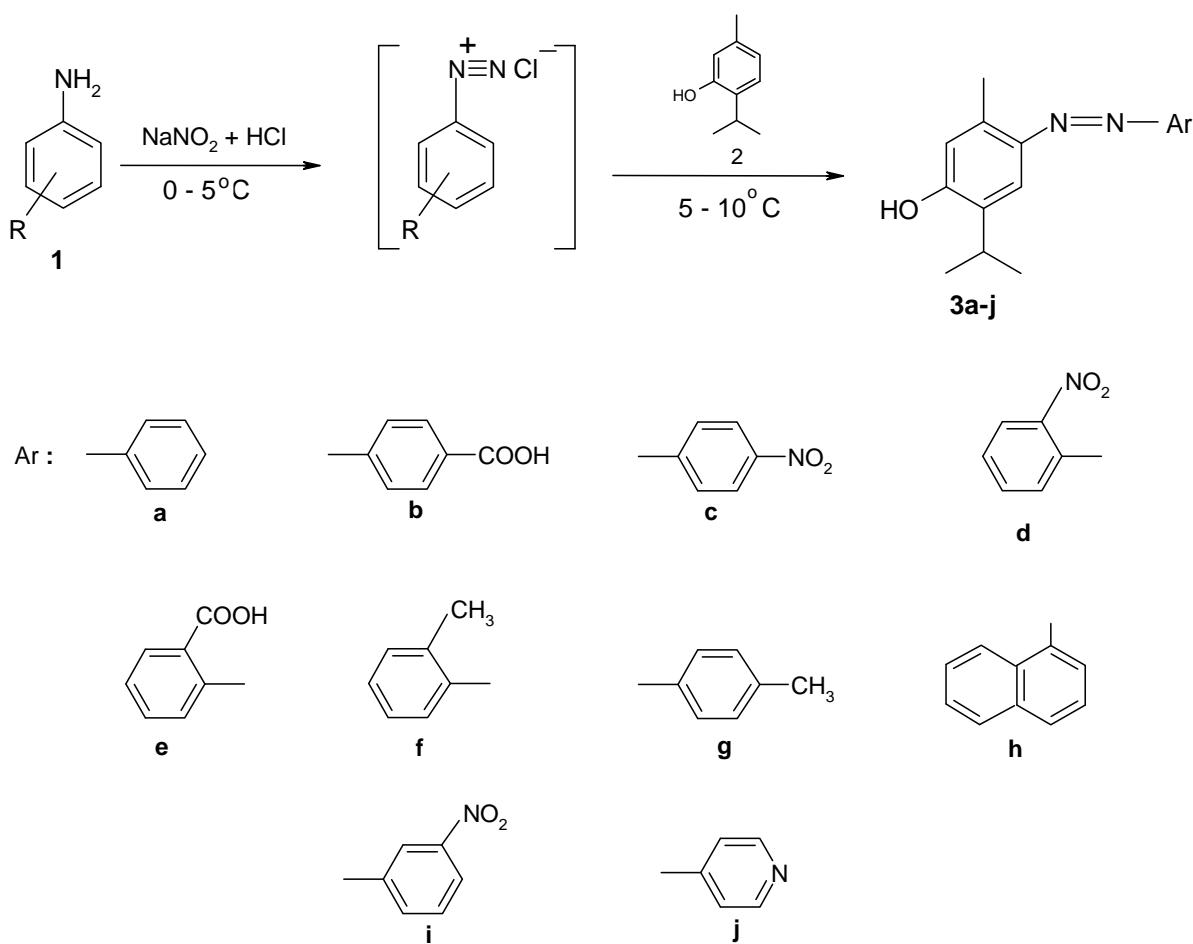
It is well known for many years that azo dyes have been most widely used in fields such as dyeing textile fibers, biomedical studies, advanced applications in organic synthesis and high technology areas like lasers, liquid crystalline displays, electrooptical devices and ink-jet printers¹⁻³.

Before advent of the sulphonamide and antibiotics, it was found that certain dyes could stain certain tissue and not others. Hence it was believed that certain dyes can be found, which could selectively combine and destroy the bacteria without damaging the tissue. Extensive investigations were resulted in the discovery of certain dyes like acridine, thiazine triphenylmethane and azo dyes. The azo dyes posses antiseptic and antiprotozoal properties and also promote wound healing. The cationic dyes are more active in acidic medium and preferably attack gram-positive bacteria as compared to anionic dyes. Most common azo dyes used as antiseptics are scarlet red and dimazon⁴.

Many of essential volatile oils contain C₁₀ hydrocarbons or related alcohols, ketones, aldehydes, carboxylic acids, phenols etc, which are collectively called as monoterpenoids⁵. Monoterpenoids are

naturally occurring substances and secondary metabolites of plants, which are generally considered as self-defense tactics against plant enemies. The biological activity of monoterpenoids^{6,7} against insects, nematodes, phytopathogenic fungi and other pest species are believed to be related to the nature and position of specific groups or substituent. The chemical modifications of natural monoterpenoids to various ether and ester derivatives⁸⁻¹² have been reported to result in modification of biological activity. These medicinal properties of azo compounds and thymol prompted us to undertake the synthesis of azo compounds containing thymol moiety (**Scheme I**).

Experimental Section


All chemicals were of synthetic grade (S.D. Fine Chem. Ltd, Mumbai, India). The products were characterized by ¹H NMR and IR. The m.p.s were determined by open capillary method and are uncorrected. The IR spectra were recorded on a Perkin-Elmer spectrum-one FTIR instrument in the form of KBr pallet. ¹H NMR spectra (**Table I**) were recorded in CDCl₃ on a Varian Mercury-YH-300 spectrometer using TMS as an internal standard. The purity of compounds were checked by TLC. The crude products were recrystallized from ethanol.

General procedure for synthesis of 2-isopropyl-5-methyl-4-(2-nitrophenyl)diazenylphenol 3 a-j

o-Nitroaniline (1.38 g, 0.01 mole) was mixed with Conc. HCl (2.5 mL) To the resultant suspension crushed ice (25 g) and NaNO₂ (2.5 mL, 4N) was added with stirring. Diazotization was carried out over 0.5 hr at 5°C and then diazonium salt solution was added dropwise at 5 to 10°C to the alkaline solution of thymol. The coupling reaction was stirred for 0.5 hr and the pH of the resultant mixture was adjusted to pH 7. The formed dye was filtered, washed with water and dried. Crude products were recrystallised with proper solvent.

* Corresponding author

† This paper is dedicated to late Prof R B Mane, (Former Head) Department of Chemistry, Shivaji University, Kolhapur 416 004.

Scheme I

Table I—Spectroscopic data of compounds 3a-j

Compd	m.p. (°C)	yield (%)	Mol. Formula	¹ H NMR (δ, ppm)
a	150-56	71	C ₁₆ H ₁₈ ON ₂	1.25 (d, 6H, 2CH ₃ , gem), 2.63 (s, 3H, Ar-CH ₃), 3.40 (m, 1H, CH), 5.25 (bs, 1H, OH), 6.65 (s, 1H, Ar-H of thymol), 7.20 (s, 1H, Ar-H of thymol), 7.45 (m, 3H, Ar-H), 7.90 (m, 2H, Ar-H).
b	234-38	67	C ₁₇ H ₁₈ O ₃ N ₂	1.25 (d, 6H, 2CH ₃ , gem), 2.64 (s, 3H, Ar-CH ₃), 3.20 (m, 1H, CH), 5.15 (bs, 1H, OH), 6.67 (s, 1H, Ar-H of thymol), 7.27 (s, 1H, Ar-H of thymol), 7.92 (d, 2H, Ar-H), 8.24 (d, 2H, Ar-H), 11.30 (bs, 1H, COOH).
c	160-64	90	C ₁₆ H ₁₇ O ₃ N ₃	1.26 (d, 6H, 2CH ₃ , gem), 2.62 (s, 3H, Ar-CH ₃), 3.19 (m, 1H, CH), 5.20 (bs, 1H, OH), 6.68 (s, 1H, Ar-H of thymol), 7.22 (s, 1H, Ar-H of thymol), 7.90 (d, 2H, Ar-H), 8.33 (d, 2H, Ar-H)
d	120-23	93	C ₁₆ H ₁₇ O ₃ N ₃	1.25 (d, 6H, 2CH ₃ , gem), 2.38 (s, 3H, Ar-CH ₃), 3.20 (m, 1H, CH), 5.20 (bs, 1H, OH), 6.40 (s, 1H, Ar-H of thymol), 7.20 (s, 1H, Ar-H of thymol), 7.45 - 8.30 (m, 4H, Ar-H).
e	220-26	65	C ₁₇ H ₁₈ O ₃ N ₂	1.21 (d, 6H, 2CH ₃ , gem), 2.23 (s, 3H, Ar-CH ₃), 3.17 (m, 1H, CH), 5.23 (bs, 1H, OH), 6.55 (s, 1H, Ar-H of thymol), 6.70 (d, 1H, Ar-H of anthranilic acid), 7.20 (s, 1H, Ar-H of thymol), 7.40 - 8.00 (m, 2H, Ar-H of anthranilic acid), 7.65 (d, 1H, Ar-H of anthranilic acid), 11.50 (bs, 1H, of COOH)
f	130-32	45	C ₁₇ H ₂₀ ON ₂	1.26 (d, 6H, 2CH ₃ , gem), 2.63 (s, 3H, Ar-CH ₃ of thymol), 2.70 (s, 3H, ArCH ₃), 3.17 (m, 1H, CH), 5.19 (bs, 1H, OH), 5.60 (s, 1H, Ar-H of thymol), 7.21 (m, 1H, Ar-H of thymol & 2H, Ar-H), 7.60 (m, 2H, Ar-H)

—Contd

Table I—Spectroscopic data of compounds **3a-j**—*Contd*

Compd	m.p. (°C)	yield (%)	Mol. Formula	¹ H NMR (δ, ppm)
g	98-100	65	C ₁₇ H ₂₀ ON ₂	1.20 (d, 6H, 2CH ₃ , gem), 2.40 (s, 3H, Ar-CH ₃), 2.60 (s, 3H, ArCH ₃ of thymol), 3.20 (m, 1H, CH), 5.24 (bs, 1H, OH), 6.58 (s, 1H, Ar-H thymol), 6.78 (d, 2H, Ar-H), 7.21 (d, 2H, Ar-H), 7.60 (s, 1H, Ar-H of thymol).
h	60-64	80	C ₂₀ H ₂₀ ON ₂	1.25 (d, 6H, 2CH ₃ , gem), 2.63 (s, 3H, Ar-CH ₃), 3.20 (m, 1H, CH), 5.24 (bs, 1H, OH), 6.70 (s, 3H, Ar-H of thymol), 7.20 (s, 1H, Ar-H of thymol), 7.90-8.00 (m, 6H, Ar-H), 8.80 (d, 1H, Ar-H)
i	110-12	64	C ₁₆ H ₁₇ O ₃ N ₃	1.25 (d, 6H, 2CH ₃ , gem), 2.40 (s, 3H, Ar-CH ₃), 3.20 (m, 1H, CH), 5.20 (bs, 1H, OH), 7.20 (s, 1H, Ar-H of thymol), 7.20-8.00 (m, 4H, Ar-H) 7.60 (s, 1H, Ar-H of thymol)
j	120-24	61	C ₁₅ H ₁₇ ON ₃	1.25 (d, 6H, 2CH ₃ , gem), 2.63 (s, 3H, Ar-CH ₃), 3.32 (m, 1H, CH), 4.20 (bs, 1H, OH), 6.50 (s, 1H, Ar-H of thymol), 7.00-8.00 (m, 1H, Ar-H of thymol & 4H of pyridine)

References

- 1 Peters A T & Freeman H S, Colour Chemistry, *The Design and Synthesis Of Organic Dyes and Pigments*. Barking, (Essex: Elsevier Appl Sci Publ Ltd); **1991**, 193.
- 2 Gregory P, *High-Technology Applications of Organic Colorants*, (Plenum Press, New York and London), **1991**, 1.
- 3 Catino S C & Farris R E, Azo dyes, edited by Grayson M, *Concise Encyclopedia of Chemical Technology*, (John Wiley & Sons, New York), **1985**, 142.
- 4 Chatwal G R, *Synthetic Drugs*, (Himalaya Publishing House), **1996**, 331.
- 5 Tsao R, Lee S, Rice P J, Jensen C, & Coats J R, *Synthesis and Chemistry of Agrochemicals IV*, Chapter 28, edited by Baker D R, (ACS Symposium Series, 584, American Chemical Society, Washington D C) **1995**, 312.
- 6 Loomis W S & Pridhan J B, *Terpenoids in Plants*, (Academic Press, New York), **1967**.
- 7 Duke S O, Keeper R F & Tu A T, *Handbook of Natural Toxins*, Vol 6, (Marcel Dekkar Inc, New York), **1991**, 269.
- 8 Haagen-Smith A J & Guenther E, *The Essential Oils*, Vol I, (Van No Strand, New York), **1948**.
- 9 Kumbhar (alias Mahulikar) P P & Dewang P M, *Pestology*, 23(1), **1999**, 27.
- 10 Kumbhar (alias Mahulikar) P P, Kapadi U R, Hundiwale D G, Attarde S B, Dewang P M & Pawar N S, *Org Prep Pro Int*, 32(6), **2000**, 600.
- 11 Kumbhar P P & Dewang P M, *J Sci Ind Res*, 60, **2001**, 645.
- 12 More D H, Dewang P M, Pawar N S, Patil S L & Mahulikar P P, *Russian Journal of General Chemistry*, 74, **2004**, 244.